Novel Dual-function Small-molecule AMPK Activator Ameliorates Metabolic Syndrome

Shanghai Institute of Materia Medica
National Center for Drug Screening

Jia Li
AMPK: an Energy Sensor, with multifunctions in metabolism

- α_1 and α_2
- β_1 and β_2
- γ_1, γ_2 and γ_3

- 75% homology between α_1 and α_2, mainly in kinase domain
- α_1 is universally expressed
- α_2 is expressed mainly in heart, skeleton muscle and liver

Annu. Rev. Pharmocol. Toxicol. 2006, 47, 1
Glucose, Insulin and AICAR Tolerance Test in AMPKa2 KO Mice

α2 KO mice are glucose intolerant, insulin resistant and AICAR resistant

Glucose, Insulin and AICAR Tolerance Test in AMPKa1 KO Mice

GTT

![GTT Graph]

- **α2-WT**: Blood glucose [mM]
- **α2-KO**: Blood glucose [mM]
- **WT_AUC**: 505 +/- 58
- **KO_AUC**: 710 +/- 82 *

ITT

![ITT Graph]

- **α2-WT**: Blood glucose [mM]
- **α2-KO**: Blood glucose [mM]
- **WT_AUC**: -308 +/- 44
- **KO_AUC**: -111 +/- 33 *

ATT

![ATT Graph]

- **α2-WT**: Blood glucose [mM]
- **α2-KO**: Blood glucose [mM]
- **WT_AUC**: -268 +/- 33
- **KO_AUC**: -131 +/- 30 *

α1 KO mice have normal glucose tolerance and insulin sensitivity and are not AICAR resistant

J.Biol.Chem. 2004, 279, 1070
AMPK Pathway was Damaged by Insulin Resistance in Skeletal Muscle

BBRC 2006, 339, 701
Am J Physiol Endocrinol Metab 2006, 290, 251
Impact on onset Type 2 Diabetes

Indicators in onset type 2 diabetes:

- High circulating lipid, high ectopic fat deposition, hyperglycemia, hyperinsulinia, and insulin resistance

AMPK activation will lead to the improvement of onset type 2 diabetes through:

- Decreasing circulating lipid; decreasing ectopic fat deposition, decreasing insulin secretion, decreasing glucose level and increasing insulin sensitivity
Proof of concept through Pharmacological Activators of AMPK

- Indirectly activate AMPK
 - AICAR (ZMP)

- Antidiabetic drugs
 - Metformin
 - TZDs: rosiglitazone, troglitazone, pioglitazone

- Directly activate AMPK
 - Small-molecule activator: A-769662 (Abbott)
 - Identified through HTS on $\alpha_2\beta_1\gamma_1$ enzyme

Autoinhibition hypothesis

Inactive
Unphosphorylated
Unmasked Destruction Domain
Rapid Turnover

Active
Phosphorylated
Masked Destruction Domain
Slow Turnover

AMP + AMPKK

+PP2C or PP2A
+Beta and Gamma

N

312

392

312

β

γ

C

N

392
Autoinhibition mechanism study

Kinase domain

Graphs showing time vs. activity and incorporation of CPM.
The effect of deletions on the activity of human AMPK α subunits
Structural model of human AMPK α1 subunit including the kinase domain and autoinhibitory domain.
Effects of mutations of predicted interacted residues on $\alpha1(1-394)$ activity
Overexpression of the deleted AMPK α mutant (Δα394), V298G and L328Q stimulate ACC phosphorylation in COS7 cells, respectively.
Overexpression of deleted AMPK α mutant (Δα394), V298G and L328 Q enhances glucose uptake in HepG2 cells following glucose deprivation.
Hypothesis Based on Knowledge

• Knowledge
 – Autoinhibition by autoinhibitory domain, which impacts on the conformation of kinase domain
 – Activation by interaction with β and γ subunits, which change the conformation of kinase domain
 – Allosteric activation by AMP

• Hypothesis
 – Will conformational change remove autoinhibition?
 – Is conformational change a key and prerequisite step?
 – Can conformational change be achieved by small-molecule activators?
Novel Strategy for AMPK small-molecule activator screening

• Screening AMPK small-molecule activators with inactive AMPK truncations
Hits Finding

Compounds screened: 3600 diverse small-molecule pure chemicals
Concentration: 40 μg/mL

<table>
<thead>
<tr>
<th>compound</th>
<th>EC50 (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT1</td>
<td>8.7</td>
</tr>
<tr>
<td>PT2</td>
<td>21.6</td>
</tr>
<tr>
<td>PT3</td>
<td>15.6</td>
</tr>
<tr>
<td>PT4</td>
<td>17.8</td>
</tr>
<tr>
<td>PT5</td>
<td>17.6</td>
</tr>
<tr>
<td>PT6</td>
<td>12.5</td>
</tr>
<tr>
<td>PT7</td>
<td>43.4</td>
</tr>
<tr>
<td>PT8</td>
<td>11.8</td>
</tr>
</tbody>
</table>

Activation curve (EC50) for hits of AMPK
The effects of PT1 on $\alpha_1\beta_1$ dimer, $\alpha_2(1-398)$, truncated α_1 proteins
PT1 lowers lipid contents in HepG2 cells

A

PT1 (μM) - 5 10 20 40 80 -
2 mM Metformin - - - - - +
pAMPK
AMPK
pACC
ACC
β-actin

40 μM Compound C
40 μM PT1 - - - - + -
2 mM Metformin - - - - + -
pACC
ACC
β-actin

B

Lipid Content (μg/mg protein)

DMSO Metformin 5 10 20 40 80

P<0.01

P<0.05

TG Content (μg/mg protein)

DMSO 40 μM PT1 2 mM Metformin
PT1-docking model with human AMPK α1 subunit

Modification and discovery of YLF466

A

![Chemical structure of YLF466D](image)

B

![Graph showing concentration vs. AMPK activity for different treatments](image)

C

![Graph showing concentration vs. AMPK activity for different treatments](image)

D

![Graph showing concentration vs. AMPK activity for different treatments](image)

E

![Graph showing concentration vs. AMPK activity for different treatments](image)

F

![Graph showing concentration vs. AMPK activity for different treatments](image)
Predicted interaction mode between AMPK α subunit and YLF466D
Addictive effects with AMP or A-769662

Graphs showing the AMPK activity (fold of basal) with varying concentrations of AMP, A-769662, and YLF466D.
YLF466D activate AMPK pathway in L6 Myotubes
Compound C blocked glucose uptake by YLF466D
YLF466D activated AMPK and lowered lipid contents in HepG2 cells.
Primary PK data

![Graph showing concentration over time for i.v. and p.o. administrations]
Oral treatment with YLF466D on db/db for 4 weeks has no effects on food consumption and body weight.
Oral treatment with YLF466D on db/db for 4 weeks improved metabolic syndrome
Oral treatment with YLF466D on db/db for 4 weeks improved glucose tolerance
Oral treatment with YLF466D on db/db for 4 weeks enhanced AMPK pathway in liver and muscle
Oral treatment with YLF466D on db/db for 4 weeks inhibited gene expression in liver and triglyceride in muscle
Oral treatment with YLF466D on DIO mice for 4 weeks improved metabolic syndrome
Oral treatment with YLF466D on DIO mice for 4 weeks improved glucose tolerance and insulin sensitivity.
Thank You!